Processing math: 100%

问答详情

个人中心

矩阵乘法为什么定义为行乘以列?

2016-02-11 浏览 27466 关注 5
矩阵 矩阵乘法
标题

学线性代数的时候,听着懵懵的,一上来老师就开始讲逆序数、行列式,周围的小伙伴们都在记定理,背公式。后来经常逛博客,逐渐了解了线性代数中的一些定理的意义,上中科院李老师矩阵论时,李老师又深刻讲了一遍,下面是李老师的总结,分享给大家。

对于矩阵,我们今天简单说一下矩阵的乘法。设两个矩阵Am×p=[aij]Bp×n=[bij],定义矩阵C=AB为矩阵AB的乘积,其中

Cm×n=[cij=pk=1aikbkj].

也就是说,矩阵C中每一个元素cij为矩阵A的第i行与矩阵B的第j列相乘得到。这就是矩阵乘法的定义,在学习线性代数的时候,老师就是这么教的,而且大家也就这么习以为常,估计至今为止也没有人对这个定义有一点点的疑问。我的问题很简单,为什么矩阵乘法的定义是这样,而不是类似矩阵加法(对应元素相加)一样,矩阵的乘法定义为两个矩阵对应元素相乘?

相信每一个人被问到这个问题,都会说:“是啊,为什么?”那么下面我们就来说明一下为什么这样定义矩阵的乘法。

1855年,英国数学家Arthur Cayley (1821-1895) 把矩阵从行列式理论剥离出来,讨论了矩阵的相关运算,创立了矩阵理论。Cayley最早讨论矩阵相关运算是从线性函数开始的(矩阵和线性函数在某种意义上,可以一一对应的),比如下面两个线性函数:

f(x)=f(x1x2)=(ax1+bx2cx1+dx2),

g(x)=g(x1x2)=(Ax1+Bx2Cx1+Dx2).

复合这两个函数会得到

h(x)=f(g(x))=f(Ax1+Bx2Cx1+Dx2)=((aA+bC)x1+(aB+bD)x2(cA+dC)x1+(cB+dD)x2).

Cayley最早的想法是用矩阵表示这样的线性函数,即函数f,g,h可以分别表示为如下的矩阵形式:

F=(abcd),G=(ABCD),H=(aA+bCaB+bDcA+dCcB+dD).

当然了,矩阵H也被成为矩阵F和矩阵G的复合(或乘积),即:

(abcd)(ABCD)=(aA+bCaB+bDcA+dCcB+dD)

这也正是我们现在熟知的矩阵乘积的定义。并且由于和线性函数的对应关系,使得这种定义更加实用。

相信,如果我们每一个人生活在19世纪——矩阵出现的时代,让你定义矩阵的乘法,你很自然地会想到用两个矩阵对应元素相乘来定义矩阵的乘法,毕竟这个是最自然、最直接的想法。但是它并不是最实用的。

大学的课程是不是很有意思呢?

问答发起人 万子德 万子德 中国科学院大学

全部回答(0)

还木有回答哦,快抢占第一把交椅吧!

- 查看更多和回答问题请下载赛氪APP -
赛乐云AI 证书查询
取消 确认

同学~下载赛氪APP就可以进群咯~
先不聊 去下载